Civilization Springs, 4/5

    Part 4. Roads and intersections.

    The previous part and its summary .

    Reading this section, it is necessary to understand: everything listed here either does not work, or ... it is potentially dangerous. For every opportunity to direct and concentrate energy finds military application in the first place. Genghis Khan subdued half the continent, directing the energy of growing grass (through horses) to military needs. England colonized half the planet, riding the wind energy. The first fast chemical energy concentrators are oil incendiary shells and powder bombs. The internal combustion engine dragged on itself the armor of two world wars across fields and marshes, and continues to serve countless clashes around the world. Atomic energy first brought the world a bomb, and only then a peaceful reactor. Any opportunity to curb new streams of energy, to concentrate it, or to quickly release it is surely monitored by the military.

    But if every item in the section is fantasy or war, then why write? Is not it better to remain silent?

    Hmm ... "I would like to be an ostrich, but the floor is concrete." I believe that it is necessary to write. If something works, let everyone know about it. If not - well, let everyone think too.

    Something like this.

    Let's get started

    4.1. Is the spring completely squeezed out?

    In general, no. There are still reserves. Mostly serious.

    First, in the strength of materials. Modern missiles are made of metal alloys. The limit of their specific strength is about 0.3 MJ / kg. Even Kevlar and carbon fiber already give ten times greater strength with the same weight, and this is still not a theoretical limit. If you dodge and make the same first stage of “Proton” from similar materials, then it will weigh significantly less, and the difference (at least) can be put into the payload. In theory. Ahem ... In theory, theory and practice are one. In practice, alas, these wonderful materials for the construction of rockets are still hardly ready. Here and the complexity of the manufacture of large structures of non-trivial forms, and unkind working temperatures, and more problems on the engineering textbook. But there is space to dig. And the first swallows[ 670 ] of composites have already flown.

    Further, nanomaterials and, in particular, graphene [ 95 ] . By itself, the binding energy between the carbon atoms in it is the same modest 2-3 eV per atom. But: a) bonds per atom three, and this together gives [ 98 ] up to 7.8 eV / atom; b) carbon is an easy element, it is profitable to divide by a kilogram, and: c) the graphene lattice is absolutely correct, free of defects and “weak links”, ready to be loaded prematurely under load. Outcome [ 355 ]: 62-65 MJ / kg, twice the "chemical" spring limit. I think that if we learn to construct such regular lattices from boron, which is even lighter, we will jump up to 100 MJ / kg. And who knows if the missiles of the future will then be powered by wildly spun flywheels from graphene or similar materials?

    [And in the comments to me, this is what interesting work on the topic was suggested [ 352 ]]

    Lemon chemical energy is also not pressed out of the skin. And this is not about the engine on a mixture of lithium, fluorine and hydrogen [ 405 ], [ 410 ] (he has a decent specific impulse, but I will not wish the enemies to work with such mixtures). No, it will be about exotic compounds that exist so far only in laboratories and theories, but promising much.

    The first example [ 420 ] (“I'm sorry, I can’t say this” if I am asked to say its name out loud):

    [Credit: By Albris - Own work, CC BY-SA 3.0, w / index.php? curid = 47523411 ]

    Explodes on its own, “for no apparent reason”, releasing energy in the amount of 6.8 MJ / kg. The figure is not too impressive, and for stuffing in a rocket this substance is painfully unstable. But note: it consists predominantly of nitrogen. It seems that the nitrogen-nitrogen chains, if properly “cocked”, store a lot of energy?

    Chemists have understood this and for a dozen years have been designing [ 265 ] more and more cunning structures with a little less than completely nitrogen. Here's another [430 ] :

    [Credit: By Meodipt - Own work, Public Domain, ]

    The heat of combustion or formation, unfortunately, is not specified. But this is unimportant, because the absolute record holder seems to have already been found [ 440 ] .

    It turns out that under pressure of over 1.1 million atmospheres and a temperature of 2000 K, the nitrogen goes into a crystalline modification called cubic gauche (in Russian, as I was told, this is called “cubic gauche modification”). And this modification, if only they do not lie for joy [ 450 ], is stable when returning to normal conditions. And can be synthesized with them. Well, metastable, more precisely. Therefore, when converted to normal nitrogen, it releases a lot of energy. Specific figures vary: according to [ 450 ], 15.8 MJ / kg is released, and on Wikipedia [ 440 ] - 27 and 33 MJ / kg. If the latter value is true, then, theoretically, the flow rate of such an engine can reach ≈6700 m / s. If the first - 4700 m / s, but it is not bad.

    Of course, 33 MJ / kg is not three hundred and not three thousand. Significantly more chemistry is unlikely to get. But even one and a half times the speed of the discharge reduces the starting mass of the rocket by several times, sharply cheapening the launch. There is something to butt. And who knows what other states of matter can be obtained at high pressures and safely "bring" from there to our normal conditions?

    Of the more exotic chemistry it is worth mentioning:

    4.1.1. Fixing atoms (not molecules!) Of hydrogen in a film of solid frozen hydrogen [ 460 ]. When achieved densities of 2 * 10 19 cm -3this is converted into an energy reserve of 2.6 MJ / kg. Although the figure does not look bright compared to traditional fuels, the approach itself is unusual. And who knows how much more will be able to get out of it? Wikipedia [ 470 ] states that a similar “dissolution” of the atom atoms of other substances in liquid helium allows storing up to 5 MJ / kg (although I cannot go through the link to work).

    I would also refer to the same group [ 480 ] to create a Bose condensate of metastable helium 4 He * in the triplet state 1s2s 3 S 1 . If its half-life is indeed more than two hours (and I don’t see any reason not to believe [ 490] ) with an energy per atom of 19.8 electrolovolts, then such matter, in principle, is able to store 475 Megajoules per kilogram! With "exhaust" in the form of the purest harmless helium. Of course, provided that these purely laboratory cryogenic studies can be brought to suitability for a “move” to a rocket.

    4.1.2 Vague indications ([ 500 ], [ 510 ]) of three and higher valences of cesium and barium hint that at least sometimes, under some conditions, not only valence but also internal ones can be used to form chemical bonds electrons of atoms. From this very understanding to the “absolute fuel”, it’s still like walking to the moon (punishment), but it is reasonable to dream about anything.

    4.1.3 Molten salt has no prospects, but what about evaporated? The heat of evaporation of some substances are very high [ 680 ] . Thus, gaseous beryllium, by condensing, emits energy in the amount of 32 MJ / kg, boron - 45. True, a person proposing to launch a flying balloon with a 2500-degree gaseous beryllium, in response, runs the risk of running into a joke about uranium scrap in mercury, nothing at all you can’t help it ...

    We’ll round up with chemistry and move on to other forms of storage.

    Article written for the site . When copying please refer to the source. The author of the article is Evgeny Bobukh .

    4.2. Other fields

    So far, we have focused mainly on the electromagnetic interaction. But in nature there are at least three more fields: gravitational, strong and weak. Is it possible to create a battery that stores energy in them?

    With the gravitational field is easiest. Raised the load on the tower - the energy is stored. Omitted - stood out. Hydraulic energy storage systems [ 520 ] are based on this principle . Unfortunately, there is an insurmountable problem. Since the potential energy is mgh , the energy per kilogram is gh . And h , that is height, in terrestrial conditions - a maximum of kilometers. These are units of kilo joules per kilogram, not even mega. Now, if on a neutron star, where g can easily be 10 12 m / s 2 ... The right word, sometimes I suspect that neutron stars and black holes are nothing more than giant power plants of super-civilizations. Well, in any case, it is unlikely that you will be able to fly into space on such a “battery” - after all, to move up it will have to be charged , and not discharged.

    So what about the gravitational field is enough. What we have "more other" fields?

    Strong [ 690 ] - is responsible for the mutual attraction of protons and neutrons in the atomic nucleus. And weak [ 700 ], is responsible for the transformation of quarks into each other, manifested in the decay of a neutron and beta decay of nuclei. From our everyday point of view, all this is atomic energy, so that together we will consider them here, using the example of typical reactions:

    • Radioactive decay . There are several types:
    • - Alpha decay. It was the nucleus of uranium-238, it became the core of thorium-234 and the alpha particle, plus 4.27 mega electron volts of energy ([ 530 ]). This is six orders of magnitude more than in chemistry. Although uranium has heavy nuclei, it still turns out to be 1.7 Gigajoules per gram .
    • - Beta decay. There was cobalt-60, nickel-60, plus an electron, plus antineutrino, plus gamma rays, plus 1.35 MeV per atom. Note that behind (almost any) beta decay, the neutron decay reaction through a weak interaction actually “sits”, described by the equation n 0 → p + + e - + ν e (+ 0.782343 MeV) in a clear form.
    • - And about ten other, more rare, types of decay [ 705 ]
    • Nuclear fission . There was a nucleus of uranium-235, a neutron hit, two nuclei of some kind of krypton and barium, plus neutrons, plus about 180 MeV per core ([ 540 ]). Gram 70 of such fissile material is equivalent in energy to the contents of all Proton fuel tanks.
    • Thermonuclear fusion . Two nuclei of light elements collided, merged into a heavier one. Energy was released, plus side particles. The most pumped option for today is the reaction of deuterium and tritium: D + T -> 4 He + n + 17.6 MeV. But there are also less “dirty” and more convenient reactions for collecting energy.

    In the form of weapons, all of the above has been mastered for a long time. In a peaceful way, too, except for thermonuclear fusion. Before him, from the 1950s, there always remained "about 15-20 years". True, I still believe in this synthesis, as the main direction of solving the energy problems of mankind.

    Radioactive decay (both plutonium and lighter isotopes such as cobalt-60 , cesium-137 ) has long been active in radioisotope generators [ 710 ] and atomic batteries in beta decay [ 720 ] . Small nuclear reactors for (semi) civilian use began to be successfully made back in the 1950s [ 555 ].

    Known and rocket engines on the reaction of nuclear fission.

    Here are the tests of the American Nerves [ 570 ], 1966-1972:

    [Image credit: William R. Corliss, Francis C. Schwenk - Nuclear Propulsion for the Space rocket engine.]

    Here is [ 5 80 ] [ 5 83 ] [ 5 86 ] Soviet RD-0410, 1965-1980:

    [Image credit [ 730 ]]

    They don’t have very good mass, so for the first steps they are not too are suitable. One can work on this, there are ideas of varying degrees of clarity, only ... but this is not the problem.

    Indeed, not so much engineering as medical and political reasons today hinder the use of nuclear energy for space exploration. Everyone is afraid (and rightly so) of radioactive contamination in case of accidents, mistakes, terrorism. We don’t really know how to treat a radioactive damage, nor does it disinfect the biosphere. A microgram of some long-lived isotopes is enough to send a person to the next world. This time. Two - from a nuclear bomb to a nuclear engine, the distance is not so great. What does a potential opponent of a space exploration partner actually launch into the stratosphere , go and see from afar?

    Until these problems are solved, I do not think that we will see a serious use of atomic energy in astronautics. So, batteries for the rover, maybe electric propulsion on an isotopic generator, this is the maximum. Alas, the diversion of Antarctica to the joint atomic-rocket base is, alas, still very far away. At a distance of fiction.

    4.2.1. However, within this section, it is worth mentioning such a funny effect as the influence of non-nuclear forces on the half-lives. We are accustomed to think that the rate of natural decay of atoms is a constant, independent of anything, and we rely on this fact for radioisotope dating [ 740 ] . But it is not so. Judging by [ 750], the half-life can be affected by the chemical state of the substance (including ionization), pressure, transition to superconductivity, electric and magnetic fields, temperature. Unfortunately, most of the works on this topic are covered with payment requirements, so without throwing a couple hundred dollars to the wind, I cannot cite primary sources and have to restrict myself to quoting or abstracts. Among those who seemed curious to me should be called:

    • The change in the decay rate of radioactive 111 In and 32 P due to the rotation in the centrifuge is significant, with a decrease / increase in the period by a few percent, depending on the direction and speed of rotation [ 760 ]. It looks even too good to be true, it would be nice to double-check this result.
    • The decrease in the half-life of 210 Po by 6.3% is simply due to its encapsulation in the copper sheath and cooling to 12K [ 770 ]. Also questionable.
    • Rhenium-187, a practically stable isotope with a half-life of 42 billion years, being fully ionized (i.e., to the state 187 Re 75+ ), reduces the lifetime to 33 years, i.e. becomes damn unstable [ 780 ]. And this work is quite reliable.
    • Neutral dysprosium 163 Dy is stable. But, being completely ionized up to 163 Dy 66+ , it turns into radioactive with a half-life of ... 50 days! [ 790 ]

    Than this is potentially promising, of course. Extraction of energy from too slowly decaying isotopes. Power management of isotopic batteries and reactors. Stabilization of distant transuranic elements for storage and study. And who knows, maybe even [ removed away from sin ]? True, any engineering rational impact today shifts the decay parameters to a maximum by percentages, and physics does not seem to predict such a “magic peak” anywhere, but who knows, who knows ...

    4.2.2. Excited and rotating nuclei

    If the energy storage of a flywheel from ordinary matter is limited by its tensile strength, will the results improve if nuclear matter is “twisted”? Will it be stricter?

    In general, the answer is positive, although there are so many subtleties behind it that I am forced to rush only to the very top. I apologize in advance for the immense omissions and simplifications, with the help of which this dissertation topic in terms of volume had to be crammed into a couple of paragraphs.

    First, the atomic nucleus can rotate more or less as a whole. As a kind of droplet of nuclear fluid ([ 800 ], [ 810 ], [ 820 ]). Typical back to which manages to "roll" such nuclei - is 30-100 ħ, then they "break". But before that, they store 10–200 MeV of energy per atom. Such a “twist” can also initiate or accelerate the decay (even stable) nuclei. True, our promotion methods today are barbaric, unsuitable for energetics: “bombing” the nuclei blindly with heavy particles in an accelerator, knowing that some of the blows will come in passing. Well, the lifetime of such nuclei is usually small, as far as I know (however, I’m not an expert here, I’ll be glad if knowledgeable people complement).

    Secondly, the core can rotate “in parts”. When only a few nucleons in it are transferred to a higher energy level ([ 830 ], [ 840 ]), it is approximately the same as electrons in an excited atom. Typical of such states back - up to several tens ħ, the reserves of energy per core range from tens of eV to tens of MeV, while lifetimes ... lifetimes are sometimes seductively long. Thus, the hafnium isomer 178m2 Hf "lives" 31 years [ 832 ] , holmium 166m1 Ho - 1200 years [ 832 ] , rhenium 186m Re - 200 thousand years [ 835 ] . Going from the excited to the base state, such nuclei emit only gamma quanta. There are neither neutrons suggestive of radiation, nor extremely dirty fragments, nor alpha or beta particles. Everything is very clean and tempting at least for this reason.

    However, it is still not clear how to pump energy into such isomers and then get it back. Since 2000, research on this topic of the year has become very controversial [ 850 ] . Someone declares success, others publish denials. It looks all very suspicious.

    It is worth mentioning that the proton can also be “wrapped up” by transferring it to an excited state with spin 3/2 and higher ([ 860 ], [ 865 ]). Already the first such state has energy 479 MeV above the base. Unfortunately, the lifetimes of these formations do not exceed 1.5 * 10 -16 seconds.

    Article written for the site . When copying please refer to the source. The author of the articleYevgeny Bobukh .

    4.2.3 Exotic atoms [ 870 ]

    Well, for a snack - in principle, matter can be constructed not only from protons, neutrons and electrons, but also from other particles. Many "exotic" nuclei have been synthesized experimentally and sometimes possess enormous reserves of energy. Unfortunately, they all live no longer than 10 microseconds, and usually much less.

    4.3. And if we do not dismiss the broker?

    To store energy in the strength of the electromagnetic field, bypassing the “greedy broker” of ordinary matter, it is required to remove the electromagnetic field from the interatomic spaces. The path itself is not new. The past 200 years, we just for him and moved, collecting on the road a lot of useful achievements.

    One of the first beginnings of Volta (in whose honor the volt entered the language) with his pillar in 1800: A

    simple stack of alternating metals developed ten, hundreds and thousands of volts, that is, much higher than the valence, and with decent currents. Electrolysis, powered by a similar column, made it possible to isolate in its pure form dozens of easily oxidizable metals such as magnesium, sodium and aluminum.

    Further more. Transmission of electricity by wire. Electric motors Radio and radar, including megawatt powers. Lasers. Ion and electron beams, x-ray machines. Welding, melting and cutting with electron beams, accelerators and artificially produced isotopes and new elements. Yes, we recognize honestly: most of these inventions as energy accumulators are hardly applicable. But they show: the fruits of bringing the electromagnetic field to the macroscopic level are tasty and promising. Why not try to think further in this direction? Personally, this seems to me the most promising.

    It is easy to say “move in this direction,” but what exactly does this mean?

    Below, I decided to give an example. Disclaimer. I do not claim that the thing described below will work exactly.I am not Boron, not Volta, and not even Persians, and I am not very strong in designing experimental installations. I well understand that in practice this structure is hardly suitable for energy storage. But, theoretically, she still overcomes the spring limit. Therefore I share. Solely as an illustration of a possible course of thought in this direction, and nothing more.

    Who cares - a long passage with formulas
    Итак, мы хотим сконструировать устройство для хранения энергии в электромагнитном поле, плотностью энергии превышающее Пружинный Предел. Это значит, что в значительной части устройства обязаны возникать очень высокие давления полей p = (E2+B2)/8π. Противостоять им обычной материей нельзя: упрёмся в Пружинный Предел (σ/ρ). Какие другие силы можно ему противопоставить? Электромагнитную в чистом виде нельзя по Теореме Ирншоу[880] (хотя есть смутные догадки: а что, если собрать нестабильную систему, не находящуюся в равновесии?) Гравитационную тоже: слишком слаба на наших масштабах. Остаётся ядерная. Итак, делаем ставку на сильное взаимодействие.

    Берём ядро криптона Kr. Обрываем с него все электроны, чтобы получить ион Kr36+. Полная энергия, потребная на это, находится суммированием цифр в таблице 19.2 на стр 411 из [290] и составляет примерно 76340 эВ. Именно столько и выделится (в основном в виде фотонов), если позволить этому атому нахватать электронов обратно. В расчёте на килограмм это 87 мегаджоулей — неплохо дла начала.

    Итак, вот он, сверхэнергоёмкий конденсатор: сферический полностью ионизированный атом криптона, одиноко плавающий в бесконечном вакууме:

    Правда… «что-то здесь не так». Много ли запасёшь в одном атоме? Надо же много. Но как только мы сделаем таких атомов хотя бы два, взаимное отталкивание тут же разнесёт их друг от друга по разным углам бесконечности! Получается, эти заряженные ионы ещё как-то в виде коллектива хранить надо. Потенциальная яма нужна, в которую их запихать можно. Из чего её сделать?

    Идём по второму кругу: из обычной материи нельзя — ионы тут же к ней притянутся и надёргают из неё электронов. Из электрического поля нельзя: теорема Гаусса[890] запрещает электростатические ямы без зарядов внутри них, а где заряды, там конец устройству. А вот из магнитного… из магнитного можно попробовать!

    Вспоминаем про пробкотрон. Он же магнитная бутылка:

    [Image credit: Автор: User:WikiHelper2134, CC BY-SA 3.0,]

    С точностью до столкновений, конечности градиентов поля и излучения любая заряженная частица, оказавшись в середине устройства, где поле слабо, там и останется, навивая кольца вокруг силовых линий. Будем считать, что всё хранится при (почти) абсолютном нуле и столкновениями можно пренебречь. Сколько положительных ионов можно в такую систему напихать? Оценим грубо, пренебрегая безразмерными числовыми множителями вроде 3 или π. Это, конечно, приведёт к ошибке до пары десятков раз, но сильно упростит расчёты; а если результат окажется интересным, умные люди после меня и точнее пересчитают.

    Пусть характерный размер облака ионов (и всей системы) r. Объёмная плотность облака n. Заряд ионов eZ. В облаке, таким образом, содержится заряд q = r3neZ, а электрическое поле отталкивания на его поверхности E = q/r2 = reZn. Распихивающее давление этого поля на облако составляет p = E2 = (reZn)2. Ему противостоит небольшая доля β полного магнитного давления системы B2:


    Магнитная энергия системы составляет B2r3. Чтобы её обеспечить, требуется прочная механическая система (катушки, упоры) массой m = Х*B2r3/(σ/ρ), где Х — «коэффициент хреновости» конструкции, показывающий, во сколько раз она тяжелее минимально возможной (согласно [370], в лучших современных катушках X составляет 10-30), а (σ/ρ) — Пружинный Предел материала катушки. Выразив B2 из предыдущего выражения, получим оценку для массы «аккумулятора»: m = Xr3(reZn)2/(β(σ/ρ))

    Наконец, сколько же энергии запасено в этих ионах? Полная энергия ионизации иона, если просуммировать приблизительно[900], составляет WZ2*Ry, где Ry = 13.6 эВ — энергия Ридберга. У нас nr3 этих ионов. Итого, в системе содержится потенциальная ионизационная энергия W = Z2*Ry*nr3.

    Теперь делим первое на второе, получаем запас энергии в джоулях на килограмм:

    w = W/m = (β/X)*(Ry/ne2r2)*(σ/ρ)

    Последняя скобка — это пружинный предел. А всё перед нею — это во сколько раз он превышен. При каких условиях это превышение окажется хотя бы единичным (т.е. есть смысл бороться за конструкцию)? Записываем:

    K = (β/X)*(Ry/ne2r2) > 1

    Вспомним выражение для энергии Ридберга Ry = e2/2rb, где rb — боровский радиус rb = ħ2/me2. Получаем условие, при котором Пружинный Предел преодолевается:

    nr2rb < (β/KX)

    Т.е. система либо достаточно маленькая, либо с достаточно разреженным облаком ионов гарантированно перепрыгивает Пружинный Предел. Достигается это благодаря своего рода «рычагу» из магнитного поля. Где обычная материя «держит» магнитное поле, а поле «держит» высокозаряженные ионы.

    Правда, если r = 100 см, X = 30, β = 0.1, K = 1, то n не должно превышать 6*103 см-3. Это очень «жиденькая» плазма. Полное содержание энергии в такой ловушке составит WZ2*Ry*nr3 = 10-4 Джоуля. По массе-то может и хорошо, а вот по полному энергосодержанию плачевно. Надо либо ловушку увеличивать до планетарных размеров, либо… «всю систему менять». Делать её квазинейтральной, например. Или попытаться держать тяжёлые ионы не магнитной ловушкой, а, скажем, клистроном. В общем, есть над чем подумать.

    In general, it turned out ... "dummy", it is also "a hydromagnetic trap, like its ... object seventy-seven-ba." But at least it seemed to be possible to have some fun without violating the laws of physics.

    4.4. And why bother to carry the energy of the rocket itself with?

    Basically, nizachem. If you make a rocket an open loop system, you can achieve a lot. Some of these ideas are already working, others are far from the practical implementation (and, possibly, permanently). I gathered them here to show: there are alternatives. Let varying degrees of reliability.

    4.4.1. "Breathing" engines that do not carry oxygen with them.

    They have been working in aviation for a long time, but at speeds up to 3-4 Mach. Sure breakthrough for this ceiling happened only in this century. The USA, China and India successfully tested [ 910 ] scramjers [ 905 ] at speeds of 5-6 Mach (Russia, it seems, even in the 95th year, but somehow everything is incomprehensible there). Chinese WU-14 [ 915 ]capable of accelerating, presumably, up to 10 M. True, all these goodies are made not for the sake of space exploration, but with the goal of creating a maneuvering, difficult to intercept ballistic missile.

    4.4.2. Power rocket laser [ 920 ] .

    The rocket drags with it only the working body. On Earth there is a power station. What is the Power Capable, which by a laser or maser transfers energy to a rocket? Maybe to directly evaporate the working fluid. Maybe indirectly, through the electric propulsion. It looks very promising. In practice, it is difficult: and the flow of energy of such a force through the air is poorly focused, and in itself such a laser is not easy to make.

    4.4.3. Powering the rocket ... by wire!

    Crazy? Of course. But ATGMs fly 4 kilometers by wire [930 ] . Is it possible to make at least 10, and transfer at least gigawatts of power through them? I figured it out and got that you can transfer 1 gigawatt of steel-aluminum “wire” with a radius of 5 centimeters for 100 seconds per 10 kilometers before this wire loses strength due to overheating. True, 400 tons of such a "wire" will weigh. And no flexibility. And what a shame, the parameters of the wire material (density, specific resistance, heat capacity, permissible heating) are included in the expression for the radius only to the power of 1/6. That is, no reasonable replacement of the material, these 5 centimeters in 2 millimeters do not turn. But! 5 centimeters is almost ... rails. It turns out the railgun [ 940]. Moreover, if you choose the material more accurately, then it can be made about 10 kilometers long. And this, consider, almost the replacement of the first stage.

    4.4.4. I can already hear the chanting " space elevator ."

    Unfortunately, this idea, in addition to obvious difficulties (for example, what to do with the satellites already roaming in orbits?), Has one fundamental weakness. If we calculate the pressure on the gap arising at the base of such a cable, then in order of magnitude we get p = ρgR , where R is the radius of the planet. Equating it to the material strength σ , and finding the ratio σ / ρ , the need for this cable not to break, we get σ /ρgR = 60 MJ / kg. That is, if the space elevator is possible, then it is on the very verge of the Spring Limit of our matter. So it is doubtful, very doubtful.

    4.4.5. “Flying with today's bodies beyond the Moon is a foot expedition of jellyfish across the Sahara”

    For too many people need to bring life-support and protection systems with them to carry these bodies around the cosmos. If we weighed 1 gram, wouldn't we have already populated the Solar System? If we lived 1 billion years, we could fly to the neighboring stars on a sunny sail. If we were robots, we would not need the terraforming of Mars for its settlement and could easily walk on Pluto. Those interested can continue - a theme for fantasy grateful.

    Completion .

    References and literature
    [95] Про графен:
    [98] Cohesion Energetics of Carbon Allotropes: Quantum Monte Carlo Study. Hyeondeok Shin, Sinabro Kang, Jahyun Koo, Hoonkyung Lee, Yongkyung Kwon, and Jeongnim Kim:
    [265] Ещё азотные цепочки:
    [290] Физические величины. Справочник. Ред. И. С. Григорьева, Е. З. Мейлиховой, Москва, Энергоатомиздат, 1991.
    [352] Nanomechanical Energy Storage in Twisted Nanotube Ropes, David Teich, Zacharias G. Fthenakis, Gotthard Seifert, and David Tomanek,
    [355] Прочности материалов:
    [370] Szabolcs Rembeczki, Design and Optimization of Force-Reduced High Field Magnets:
    [405] Двигатель на литии, водороде и фторе:
    [410] Исходная работа за [405] (упомянуть не удосужились, и понятно почему — формат ужасный, всё бито):
    [420] Азотные кольца:
    [430] Азотные кольца:
    [440] Nitrogen cubic gauche:
    [450] Метастабильность кубического азота:
    [460] Атомарный водород в твёрдом:
    [470] Helium impurity condensates:
    [480] Bose-Einstein Condensation of Metastable Helium Atoms, ACADEMIC THESIS, Andrey Sergeevich Tychkov, Novosibirsk, Russia:
    [490] Radiative Decay Rates of Metastable Triplet Helium and Heliumlike Ions, Lauren L. Moffatt, University of Windsor:
    [500] Forcing Cesium into Higher Oxidation States Using Useful hard x-ray Induced Chemistry under High Pressure, D Sneed et al 2017 J. Phys.: Conf. Ser. 950 042055:
    [510] Barium in High Oxidation States in Pressure-Stabilized Barium Fluorides, Dongbao Luo, Yanchao Wang, Guochun Yang, and Yanming Ma, The Journal of Physical Chemistry C 2018 122 (23), 12448-12453, DOI: 10.1021/acs.jpcc.8b03459:
    [520] Гидравлическое хранение энергии:
    [530] Урановая серия распада:
    [540] Ядерное деление:
    [550] Распад нейтрона:
    [555] Малые ядерные реакторы:
    [570] Nerva, двигатель:
    [580] РД-0410:
    [583] РД-0410:
    [586] РД-0410:
    [670] Electron, ракета из композитных материалов:
    [680] Энтальпии парообразования элементов:
    [690] Сильное взаимодействие:
    [700] Слабое взаимодействие:
    [705] Типы радиоактивного распада:
    [710] Радиоизотопные генераторы:
    [720] Батарейки на бета-распаде:
    [730] Картинки РД-0410:
    [740] Описание радиоизотопного датирования:
    [750] Список известных не-ядерных типов воздействий, влияющих на периоды полураспада атомов:
    [760] Changes of decay rates of radioactive 111In and 32P induced by mechanic motion. He YuJian, Qi Fei, Qi ShengChu:
    [770] First hint on a change of the 210Po alpha-decay half-life in the metal Cu. F. Raiola, T. Spillane, B. Limata, B. Wang, S. Yan, M. Aliotta, H. W. Becker, J. Cruz, M. Fonseca, L. Gialanella, A. P. Jesus, K. U. Kettner, R. Kunze, H. Luis, J. P. Ribeiro, C. Rolfs, M. Romano, D. Schürmann, F. Strieder:
    [780] Observation of Bound-State β Decay of Fully Ionized 187Re: 187Re — 187Os Cosmochronometry. F. Bosch, T. Faestermann, J. Friese, F. Heine, P. Kienle, E. Wefers, K. Zeitelhack, K. Beckert, B. Franzke, O. Klepper, C. Kozhuharov, G. Menzel, R. Moshammer, F. Nolden, H. Reich, B. Schlitt, M. Steck, T. Stöhlker, T. Winkler, and K. Takahashi. Phys. Rev. Lett. 77, 5190 – Published 23 December 1996.
    [790] Radioactive decays of highly-charged ions. B. S. Gao, M. A. Najafi, D. R. Atanasov, K. Blaum, F. Bosch, C. Brandau, X. C. Chen, I. Dillmann, Ch. Dimopoulou, Th. Faestermann, H. Geissel, R. Gernhäuser, P.-M. Hillenbrand, O. Kovalenko, C. Kozhuharov, S. A. Litvinov, Yu. A. Litvinov, L. Maier, F. Nolden, J. Piotrowski, M. S. Sanjari, C. Scheidenberger, U. Spillmann, M. Steck, Th. Stöhlker, Ch. Trageser, X. L. Tu, H. Weick, N. Winckler, H. S. Xu, T. Yamaguchi, X. L. Yan, Y. H. Zhang, and X. H. Zhou.
    [800] Kungliga Tekniska Hogskolan, Rotational Model (про вращение ядер):
    [810] BEHAVIOR OF NUCLEI AT HIGH ANGULAR MOMENTUM, F.S. Stephens, Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720:
    [820] Saddle-point shapes and fission barriers of rotating nuclei. F PLASIL. Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6372, USA.
    [830] Про ядерные изомеры:
    [832] Изомеры высокой стабильности:
    [835] Изотопы рения:
    [840] Atlas of nuclear isomers and their systematics. Ashok Kumar Jain and Bhoomika Maheshwari. Department of Physics, Indian Institute of Technology, Roorkee-247667, India:
    [850] Противоречия в работах про стабильный изомер гафния:
    [860] Про «вращение» протона:
    [865] RICHARD WILSON, The Excited States of the Proton,
    [870] Экзотические атомы:
    [880] Теорема Ирншоу:'s_theorem
    [890] Теорема Гаусса:
    [900] Про потенциалы ионизации многозарядных ионов:
    [905] Ну да, собственно про скрэмджет:
    [910] Известные испытания скрэмджетов:
    [915] Китайский скрэмджет WU-14:
    [920] Статья про разные способы запитки ракет пучками:
    [930] ПТРК Фагот:Фагот_(ПТРК)
    [940] Рельсовый запуск:

    Also popular now: